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1 The Primary Image: The Flux Distribution

There are four images stored in the CRUSH output image file. Each of these
images reside in a separate HDU (Header-Data Unit). Most FITS aware software
astronomers use (ds9, GAIA, IDL) can access the various images separately. You
can also find C, JAVA or FORTRAN libraries on-line that give tools to read the
data from your own code, if you prefer.

The first (Primary) image is the flux distribution map. A given pixel in
that map represents a measurement value at xi, yi is I(xi, yi). That is what a
SHARC-2 pixel would read when looking at that given position on the sky if
there was no atmosphere to dampen the signal (i.e. absorbtion corrected flux).
The natural units of the flux distribution map are thus bolometer voltage units,
which can be nV or V . Given, that we know what voltage signal a 1Jy source
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would produce at the bolometer (as encoded in the conversion factor that is
provided to crush either via the -mapJy option flag or by the MAP V PER JY con-
figuration key), we can represent that measurement value also in approximate
flux density units of Jy/beam, Jy/arcsec2 or Jy/sr (as set by the -unit option
or MAP UNIT key).

1.1 Aperture Flux

For sources with substantial signal-to-noise ratio, the most accurate way of
measuring flux is to measure the flux inside some aperture that fully encloses
the source structure of interest. A flux inside such an aperture A can be obtained
as,

FA =
Apixel

(4′′.85× 4′′.77)
×

Jy

[I ]

∑

xi,yi∈A

I(xi, yi) (1)

where Apixel is the area of a map pixel. Jy/[I ] is the conversion factor of
map units to janskys. For maps in voltage units this is approximately given by
the inverse of 798 nV/Jy.

For CRUSH default of 1/3 SHARC-2 lateral detector size map pixelization,
this is simply,

FA =
1

9
×

Jy

[I ]

∑

xi,yi∈A

I(xi, yi) (2)

To calculate the uncertainty corresponding to this quantity, refer to Sec-
tion 3.1.

1.2 Peak Flux (Flux Inside a Beam)

For point-like sources one may want to quote the flux incident inside an ap-
propriate beam, or peak flux, as this value is likely to incorporate all flux from
the point source in question. The peak flux will have units of Jy/beam, and is
calculated as,

Fpeak ≡
Abolometer

Abeam
·
Jy

[I ]
· I(xi, yi)

=
(4′′.85× 4′′.77)

2πσ2

beam

·
Jy

[I ]
· I(xi, yi)

where,

σbeam ≈ 8′′.5 FWHM / 2.35

1 Jy ≈ 353 nV
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being the typical SHARC-2 beam and flux-to-voltage conversion factor (as
defined in crush.cfg).

Note, that this measure will be dependent on what beam size (and shape)
you assume, and thus it is not a very well defined quantity. However, it is a flux
measure that astronomers commonly quote and use, nonetheless.

To calculate the uncertainty corresponding to the flux inside a beam, refer
to Section 3.2.

1.3 Smoothing Maps

The smoothing with a beam B(x, y) is defined as,

Ismooth(xi, yi) ≡

∑

x′

j
,y′

j
B(x′

j , y
′
j) × I(x′

j , y
′
j) / σ2(x′

j , y
′
j)

∑

x′

j
,y′

j
B(x′

j , y
′
j) / σ2(x′

j , y
′
j)

(3)

The usual choice for the smoothing beam is a Gaussian beam of the form:

B(r) = e
− r2

σ2

beam (4)

where FWHM = 2.35 σbeam.
Smoothing is available in the CRUSH suite via the -smooth=X option for

crush, show or imagetool, or through the MAP SMOOTHING=final:X configu-
ration key to crush. All these options define a beam size that the image is
convolved to, not convolved with. That is, if the image is already smoothed to,
say, 4′′ and you want to smooth to 8′′, then a convolving beam is chosen with
FWHM of ((8′′)2 − (4′′)2)1/2 ≈ 7′′ when you use -smooth=8.0. This way, one
has to keep in mind only what the smoothing goal is, and not what it takes to
get there.

The estimated RMS for a smoothed map is discussed in Section 3.

1.3.1 A Note on Smoothing

Why smooth maps at all? There are a few important reasons in favour of
smoothing with an appropriate beam. Most notably one should smooth be-
cause the map pixelization can be finer than the true physical resolution of the
telescope beam. Any structure on the map that appears on a finer scale than
the telescope beam is unphysical i.e., unreal. The telescope only responds to
structures ≥ the telescope beam size, and the resulting maps should reflect that.
One may also note that smoothing will produce more impressive looking maps
by filtering out undesired high spatial frequency structures. Especially for faint
sources that may not be easy to spot on unsmoothed maps. Yet another rea-
son for smoothing is to do away with the malicious effect of any undetermined
pointing errors that otherwise wash out a faint source’s flux. E.g. smoothing
with a 10′′ Gaussian in case of an 8′′ telescope beam (PSF) will properly recover
point sources even if the pointing has been no better than 6′′ RMS!. (Of course,
you pay the price of a higher beam noise for not having had your pointing nailed
down securely.)
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1.4 Filtering Undesired Extended Structures

CRUSH also offers the possibility of filtering out extended structures. The
filtering is essentially the removal of the low spacial frequency components via
a convolution filter. In the usual notation of convolution as an external direct
product, it is:

Ifiltered = I − I ⊗ E(r) (5)

where E(r) is a beam that corresponds to the typical size of extended struc-
tures above which scale the map is extensively filtered.

Note that while such a filter can be useful for identifying the location of
point-like sources in the presence of undesired extended structures, the filter will

not preserve fluxes even for point-like objects, and thus images that are thus
filtered should not be used for flux extraction purposes, unless you understand
what correction you will have to apply.

Filtering extended structures is also available in imagetool and show via
the -extFilter option.

2 The Second Image: Integration Time

The second image (Integration Time) stores the total amount of time a SHARC-
2 pixel has been looking at the given map position. For smoothed maps, it is
reinterpreted as the total amount of time a SHARC-2 pixel has been looking
over a beam centered on the given position.

Integration time has units of seconds.

3 The Third Image: RMS

The third image (RMS) represents the actual measurement uncertainty. Its
value at some map pixel i located at at xi, yi is σ2(xi, yi), and has the same
units as the Primary (Flux Distribution) image. One should think of this value
as the true measurement uncertainty of SHARC-2 pixels looking over that map
position, and thus it is independent of whatever smoothing that may have been
applied to the map. As such it is not a very useful number unless you deal
with unsmoothed maps. The map uncertainty at xi, yi for a smoothed map is
obtained as,

1

σ2
map(xi, yi)

≡
Apixel

(4′′.85 × 4′′.77)
×

∑

x′

j
,y′

j

B(xi − x′
j , yi − y′

j)

σ2(x′
j , y

′
j)

(6)

where B(x, y) is the convolving beam function, Apixel is the area of a map
pixel.

The crush default is to use pixelization of 1/3 Cassegrain SHARC-2 detector
lateral size, and thus, in the default case the above simplifies to:
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1

σ2
map(xi, yi)

=
1

9
×

∑

x′

j
,y′

j

B(xi − x′
j , yi − y′

j)

σ2(x′
j , y

′
j)

(7)

This can be further simplified in case of smoothing beam being Gaussian
(which is most commonly used) and if the map noise is reasonably uniform
inside the beam area. In this case, one arrives to the rather simple expression
of:

σmap(xi, yi) ≈ 1.83 FWHM × σ(xi, yi) (8)

It is important that one understands the difference of measurement uncer-

tainty vs. map uncertainty. The former is a characteristic of the data taking
process (scan pattern) in a sense, while the latter is the value that really char-
acterises the uncertainty of the map at some given point. One could ask the
question why not put the map uncertainty as the RMS image. It would be a
lot less confusing, surely... Well, not exactly. It turns out that uncertainties of
all sorts (peak flux uncertainty, aperture flux uncertainty, etc.) are easily cal-
culated from the measurement uncertainty but not from the map uncertainty.
In that light the choice is obvious.

3.1 RMS for an Aperture Flux Value

For an aperture flux, calculated as discussed in Section 1.1, we can assign the
uncertainty,

σ2

A =
Apixel

(4′′.85× 4′′.77)

∑

xi,yi∈A

σ2(xi, yi) (9)

which, for the default CRUSH map pixelization of 1/3 of SHARC-2 detector
lateral size, simplifies to:

σ2

A =
1

9

∑

xi,yi∈A

σ2(xi, yi) (10)

3.2 RMS for Flux Incident Inside a Beam

The uncertainty for a flux quoted inside a beam is of identical for to the pre-
viously discussed map uncertainty (Section 3, except that the smoothing beam
is replaced by the beam over which the flux is measured. For an 8′′.5 FWHM
Gaussian telescope beam (PSF) under the default map pixelization,, in a region
of reasonably uniform noise, this simplybecomes,

σbeam(xi, yi) ≈ 15.6 σ(xi, yi) (11)
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3.3 Excess RMS

All calculated uncertainties (measurement uncertainty, map uncertainty etc.)
are estimated under the assumption of independent pixels. What happens if
there is a correlation of the noise residuals among pixels? Suppose, the bolome-
ter signal can be written as,

I(t, b) = ... + n(t, b) +
∑

b′ 6=b

C(b, b′)n(t, b′) (12)

where n(t, b) is the bolometer noise and C(b, b′) is a correlation coefficient
between two bolometers b and b′. In this case a generalized linear combination
of the bolometer signals will be of the form

A =
∑

b

αbI(t, b) ∼ ... +
∑

b

αbn(t, b) +
∑

b′ 6=b

C(b, b′)n(t, b′) (13)

The corresponding uncertainty will be simply the expectation value of the
noise terms squared. Which in the case of residual covariances C(b, b′) << 1
and comparable detector noise σb ≈ σb′ , can be reduced as,

σ2

A =
∑

b

αb 〈



n(t, b) +
∑

b′ 6=b

C(b, b′)n(t, b′)





2

〉t,b

=
∑

b

αb 〈 n2(t, b) +
∑

b′ 6=b

C(b, b′)n(t, b)n(t, b′) + O(C2) 〉t,b

≈
∑

b

αb σ2

b







1 +
∑

b′ 6=b

C(b, b′)







= (1 + C) ×
∑

b

αb σ2

b

= (1 + C) × σ̂2

A

That is, the true measure of the uncertainty will be a factor of (1+C) higher
than in the case of independent pixels.

The map fluxes in the flux image are also just a linear combination of pixel
data, and thus the same factor applies. If one wants to have a reliable estimate
of the flux uncertainty, the statistically calculated errorbars have to be scaled
upward by a factor of (1 + C) to account for pixel-to-pixel covariances. In case
of crush, one should be able to determine the scaling factor as a χ2 over the
areas of the map not containing sources, defined as,

(1 + C) → χ2 ≡
∑

xi,yi

F 2(xi, yi)

σ2
map(xi, yi)

(14)

Alternatively, in the presence of sources (though may be faint) one can fit
a Gaussian to the signal-to-noise distribution of the map pixels (obtainable
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via the histogram utility) in the appropriate range where the distribution is
well aproximated by a Gaussian. The apparent with of the fitted Gaussian
distribution will provide the noise scaling factor.

One can apply the appropriate scaling factor to CRUSH maps via the -rmsscale
option flag of imagetool, so that all calculated noise or signal-to-noise estimates
are realistic afterwards.

4 The Fourth Image: Signal-to-Noise

The signal-to-noise at (xi, yi) for a smoothed map is defined as

S/N(xi, yi) =
Fxi,yi

σ2
map(xi, yi)

(15)

While it is purely a derivative of the images already discussed, it has been
appended to the reduced FITS file, to ease the job of the astronomer. It requires
some manipulation, either with the help of some custom written code or via some
image manipulating environment such as IDL, to calculate the map uncertainty
from the measurement uncertainties, as previously discussed. Thus the signal-
to-noise image was made available so that the observer can quickly and easily
evaluate the significance of a peak flux measurement on the map. Recall that
the actual noise is some factor of 2 or (1 + C) times higher than the estimated
noise to the the not fully uncorrelated nature of detector residuals. Accordingly,
the true signal-to-noise is the same factor lower than the estimate thus available.
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